- Диаграмма «ящик с усами» в статистике
- Диаграмма «ящик с усами»
- Построение диаграммы «Ящик с усами» рассмотрим на следующем примере
- Шаги построения диаграммы «ящик с усами»
- Диаграмма «ящик с усами» (boxplot) в Excel 2016
- Настройки диаграммы «ящик с усами»
- Ящик с усами
- Содержание
- Компактность представления информации
- Построение
- Модификации ящика с усами
- Ссылки
Диаграмма «ящик с усами» в статистике
Содержание:
Диаграмма «ящик с усами»
Построение диаграммы «Ящик с усами» рассмотрим на следующем примере
Задача пример №154
15 работников фирмы при сдаче экзамена по технике безопасности, получили следующие баллы:
13 9 18 15 14 21 7 10 11 20 5 18 37 16 17.
Представьте данную информацию в виде диаграммы «ящик с усами».
Решение:
1. Расположите данные в порядке возрастания, определите медиану и отметьте ее через .
2. Данные слева от медианы расположены в первой нижней половине, справа от медианы — в верхней половине. Т.е. медиана делит данные на две половинки.
3. Медианы половинок, называемые квартилями (здесь = 10,
= 18), разбивают данные на 4 части.
4. Определяют изменение между квартилями —
= 18 — 10 = 8
5. Отметим на числовой оси наименьшее и наибольшее значения, квартили и медиану — 5 важных точек. Нарисуем прямоугольник, длина которого равна разности изменению между квартилями. Этот прямоугольник делится медианой на две части. Теперь нарисуем «усы», соединив наибольшее и наименьшее значения с соответствующими квартилями.
Мы построили диаграмму «ящик с усами» в соответствии с представленными данными. Теперь, по диаграмме, представим данные. Из диаграммы видно, что приблизительно половина, 50 % , из 15 человек набрали от 10 до 18 баллов, 25% — меньше 10 баллов и 25% — больше 10 баллов.
Разница длин левого и правого «уса» зависит от разницы значений данных в соответствующих частях.
Для построении диаграммы «ящик с усами» из заданной совокупности выделяют 5 значений:
Медиану , квартиль
, значение которого меньше медианы и является медианой нижней половины, квартиль
, значение которого больше медианы и является медианой верхней половины множества данных, наибольшее и наименьшее значения.
Шаги построения диаграммы «ящик с усами»
1. Проводится горизонтальная прямая.
2. В зависимости от диапазона изменения данных проводится деление.
3. На прямой отмечают 5 значений — ,
,
, наименьшее значение, наибольшее значение.
4. От до
рисуется ящик.
5. Рисуем «усы» от : до минимального значения и от
до максимального значения.
Задача пример №155
Ниже представлены данные возраста участниц женской паралимпийской команды по волейболу
24, 30, 30, 22, 25, 22, 18, 25, 28, 30, 25, 27. Представьте данные в виде диаграммы «ящик с усами».
Решение:
1. Расположим данные и найдем медиану и квартили.
2. Изобразим числовую ось и отметим эти следующие данные.
3. При помощи разности квартилей —
= 29 -23 = 6 нарисуем ящик и разделим его на две части (при помощи медианы). Соединим ящик с наибольшим и наименьшим значением.
4. Представление диаграммы. Возраст 50% баскетболисток между 23-29 годами, 25% меньше 23 лет, 25% — больше 29 лет. Длинными или короткими являются «усы» ящика показывает, близко ли или далеко расположены друг от друга данные внутри 25% — го интервала. Например, левый «ус» длиннее, правый — короче. Так как в 25%-интервале значения изменяются между 18-23, а в левом «усе» мы встречаем только два значения 29-30.
Данные, которые сильно отличаются от основных данных совокупности, называются выбросами. Выбросы можно определить относительно верхнего и нижнего квартиля. В этом случае выбросом считается, значение в 1,5 раза больше или меньше разности —
. Например, в рассмотренном нами примере нижний квартиль 23, верхний квартиль 29, разность квартилей 6. Тогда значения 23 — 1,5 • 6 = 14 и 29 + 1,5 • 6 = 38 считаются граничными значениями. Все значения, которые больше 38 и меньше 14, называются выбросами.
Эта лекция взята из раздела решения задач по математике, там вы найдёте другие лекци по всем темам математики:
Математика: полный курс решений задач в виде лекций |
Другие темы которые вам помогут понять математику:
Присылайте задания в любое время дня и ночи в whatsapp.
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназачен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Источник статьи: http://natalibrilenova.ru/diagramma-yaschik-s-usami-v-statistike/
Диаграмма «ящик с усами» (boxplot) в Excel 2016
Excel 2016, как известно, обогатился новыми типами диаграмм. Одна такая, которая диаграмма Парето, уже была показана. В этот раз рассмотрим другую, чисто статистическую. Называется «ящик с усами» или «коробчатая диаграмма» (box-and-whiskers plot или boxplot).
Раньше я такие видел только в специализированных ПО, типа STATISTICA, и для того, чтобы нарисовать подобную диаграмму в Excel, нужно было изрядно потрудиться. Теперь она есть в стандартном наборе Excel.
Зачем нужна такая диаграмма? Допустим, есть выборка для анализа. А еще лучше несколько выборок, которые нужно сравнить. Для этого рассчитывают различные показатели. Однако к любому расчету всегда хочется добавить наглядности, чтобы мозг перешел в режим образного представления, а не довольствовался сухими цифрами и формулами. Поэтому основные характеристики ловко изображают на рисунке. Отличным вариантом будет как раз диаграмма «ящик с усами».
На рисунке показан формат по умолчанию. Как видно, сравниваются две выборки путем изображения двух «ящиков с усами».
Что здесь что обозначает?
Крестик посередине – это среднее арифметическое по выборке.
Линия чуть выше или ниже крестика – медиана.
Нижняя и верхняя грань прямоугольника (типа ящика) соответствует первому и третьему квартилю (значениям, отделяющим ¼ и ¾ выборки). Расстояние между 1-м и 3-м квартилем – это межквартильный размах (или расстояние).
Горизонтальные черточки на конце «усов» – максимальное и минимальное значение (без учета выбросов, см. ниже).
Отдельные точки – это выбросы, которые показываются по умолчанию. Если значение выходит за пределы 1,5 межквартильных размаха от ближайшего квартиля, то оно считается аномальным. Их можно скрыть (см. ниже настройки).
Во всей красе «ящик с усами» проявляется при сравнении выборок, в которых данные делятся на категории. Допустим, провели некоторый эксперимент среди мужчин и женщин. Есть данные до и после эксперимента по обоим полам. Для анализа потребуется вычислить различные показатели. А если к этому добавить диаграмму «ящик с усами», то результат будет весьма наглядным.
Отлично видно, что после проведения эксперимента данные по мужчинам в целом уменьшились, а данные среди женщин наоборот, увеличились. Это не значит, что выборки больше не нужно анализировать (сравнивать, проверять гипотезы и т.д.). Но наглядность сильно улучшает понимание. Перейдем к настройкам.
Настройки диаграммы «ящик с усами»
Общий вид диаграммы настраивается стандартно. Можно менять цвет, добавлять подписи и т.д. Для этого есть две контекстные вкладки на ленте (Конструктор и Формат). Но есть настройки, предназначенные специально для этой диаграммы.
Выбираем какой-либо ряд и жмем Ctrl+1. Либо два раза кликаем по какому-нибудь «ящику». Можно через правую кнопку Формат ряда данных…. Справа вылазит панель настроек.
Рассмотрим по порядку.
Боковой зазор – регулирует ширину ящиков и расстояние между ними.
Показывать внутренние точки. Если поставить галочку, то на оси, где расположены «усы», точками будут показаны все значения. Так хорошо видно распределение внутри групп.
Показывать точки выбросов – отражать экстремальные значения.
Выбросы – это точки, выходящие за пределы 1,5 межквартильных размаха.
Показать средние метки – среднее арифметическое (крестики). Стоят по умолчанию, но можно скрыть.
Показать среднюю линию – только для различных категорий. Показывает изменения по категориям.
Если добавить линии, то изменения после эксперимента станут видны еще лучше. В справке написано, что соединяются медианы, но на графике почему-то соединяются средние. Чудеса.
Инклюзивная медиана или эксклюзивная медиана. Инклюзивная медиана включает в «ящик» квартильные значения , а эксклюзивная медиана не включает. При выборе «эксклюзивной медианы» верх и низ «ящика» соответствует средней между квартильным и следующим (от центра) значением. По умолчанию стоит «эксклюзивная». Пусть стоит дальше. Причем тут медиана, вообще не понял, – речь ведь про квартиль. Думал, криво перевели, но в английской версии те же названия. В общем, здесь лучше ничего не менять.
Своевременное использование диаграммы «ящик-усы» может дать весьма ценную и наглядную информацию. Аналитику, который использует специализированные программы или трудоемкие настройки Excel, будет очень приятно иметь такую диаграмму под рукой.
Как показано в ролике ниже, все делается очень быстро и просто.
Источник статьи: http://statanaliz.info/excel/diagrammy/diagramma-yashhik-s-usami-boxplot-v-excel-2016/
Ящик с усами
Ящик с усами, диаграмма размаха (англ. box-and-whiskers diagram or plot, box plot ) — график, использующийся в описательной статистике, компактно изображающий одномерное распределение вероятностей.
Такой вид диаграммы в удобной форме показывает медиану (или, если нужно, среднее), нижний и верхний квартили, минимальное и максимальное значение выборки и выбросы. Несколько таких ящиков можно нарисовать бок о бок, чтобы визуально сравнивать одно распределение с другим; их можно располагать как горизонтально, так и вертикально. Расстояния между различными частями ящика позволяют определить степень разброса (дисперсии) и асимметрии данных и выявить выбросы.
Содержание
Компактность представления информации
График «ящик с усами», или «ящичковая диаграмма», был разработан Джоном Тьюки в 1970-х годах. По сути, ящик с усами — это быстрый способ изучения одного или нескольких наборов данных в графическом виде. Этот график может показаться более примитивным, чем, например, гистограммы, но он имеет некоторые преимущества. Он занимает меньше места и поэтому особенно полезен для сравнения распределений между несколькими группами или наборами данных. Кроме того, ящик с усами в своей первоначальной форме прост для построения.
На графике 2 приведены два графических представления распределения одной и той же случайной величины. Сверху показана плотность распределения, а снизу ящик с усами. Видно, что ящик с усами более компактный и по нему легко можно оценить медианы, квантили, дисперсию и асимметрию в данных, а также выявить выбросы. Асимметрию данных можно увидеть не только по медиане, смещённой к какому-либо концу ящика, но и по разной длине усов, выходящих из ящика.
График «ящик с усами» очень прост для понимания и именно поэтому часто используется в различных публикациях для визуализации данных.
Построение
Границами ящика служат первый и третий квартили (25-й и 75-й процентили соответственно), линия в середине ящика — медиана (50-й процентиль). Концы усов — края статистически значимой выборки (без выбросов), и они могут определяться несколькими способами. Наиболее распространённые значения, определяющие длину «усов»:
- Минимальное и максимальное наблюдаемые значения данных по выборке (в этом случае выбросы отсутствуют);
- Разность первого квартиля и полутора межквартильных расстояний; сумма третьего квартиля и полутора межквартильных расстояний. В общем виде эта формула имеет вид
- Среднее арифметическое по выборке ± одно стандартное отклонение; [источник не указан 1684 дня]
- 9-й и 91-й процентили;
- 2-й и 98-й процентили.
Данные, выходящие за границы усов (выбросы), отображаются на графике в виде точек, маленьких кружков или звёздочек. Иногда на графике отмечают среднее арифметическое и его доверительный интервал («зарубка» на ящике). Иногда зарубками обозначают доверительный интервал для медианы.
В связи с тем, что не существует единого общего согласия относительно того, как конкретно строить «ящик с усами», при виде такого графика необходимо искать информацию в сопроводительном тексте относительно того, по каким параметрам ящик с усами строился.
Модификации ящика с усами
Несмотря на свою простоту и удобство, первоначальная форма ящика с усами обладает и некоторыми недостатками. Один из таких существенных недостатков — отсутствие на графике информации о количестве наблюдений по выборке. Действительно, ящик с усами позволяет сравнить медианы, квартили, минимумы и максимумы по различным выборкам, но если мы захотим сделать вывод об общей медиане по всей совокупности выборок, то мы не сможем этого сделать, не прибегая к расчётам на исходных данных. В 1978 году первоначальная форма ящика с усами была модифицирована МакГиллом, Ларсеном и Тьюки. Они предложили учитывать размер выборочной совокупности, рисуя ящики разного размера, а также изобразили на графике доверительный интервал для медиан в виде расходящихся клиньев. Чем больше ящик по размерам, тем больше количество наблюдений в выборке, по которой строился этот ящик. Что касается доверительного интервала, то он представляет собой выемки на каждом из ящиков; в случае, если получившиеся выемки разных ящиков не пересекаются, их медианы статистически значимо различаются.
Иная модификация получила название «histplot» (сокр. от «histogram plot», с англ. — «график-гистограмма»). Теперь на графике отображаются плотности распределения по трём точкам: медиане, первому и третьему квартилю. Соответственно, вместо прямоугольника, «ящик» теперь представляет собой две равнобедренные трапеции, имеющие смежное основание.
Дальнейшее изменение получило название «vaseplot» (с англ. — «график-ваза») из-за визуального сходства «ящика» с вазой. На данном графике производится отображение всех плотностей вероятностей от первого до третьего квартиля. Затемнённые области представляют собой доверительный интервал медианы.
Ссылки
- Frigge, M.; Hoaglin, D. C.; Iglewicz, B. (1989). «Some Implementations of the Boxplot». The American Statistician. 43 (1): 50—54. DOI:10.2307/2685173. JSTOR2685173.
- Benjamini, Y. (1988). «Opening the Box of a Boxplot». The American Statistician. 42 (4): 257—262. DOI:10.2307/2685133. JSTOR2685133.
- Поп-математика для взрослых детей
- Диаграмма размаха
Что такое wiki2.info Вики является главным информационным ресурсом в интернете. Она открыта для любого пользователя. Вики это библиотека, которая является общественной и многоязычной.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License.
Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. wiki2.info является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).
Источник статьи: http://wiki2.info/%D0%AF%D1%89%D0%B8%D0%BA_%D1%81_%D1%83%D1%81%D0%B0%D0%BC%D0%B8