Меню

Ящик с усами квантиль

Диаграмма «ящик с усами» в статистике

Содержание:

Диаграмма «ящик с усами»

Построение диаграммы «Ящик с усами» рассмотрим на следующем примере

Задача пример №154

15 работников фирмы при сдаче экзамена по технике безопасности, получили следующие баллы:

13 9 18 15 14 21 7 10 11 20 5 18 37 16 17.

Представьте данную информацию в виде диаграммы «ящик с усами».

Решение:

1. Расположите данные в порядке возрастания, определите медиану и отметьте ее через .

2. Данные слева от медианы расположены в первой нижней половине, справа от медианы — в верхней половине. Т.е. медиана делит данные на две половинки.

3. Медианы половинок, называемые квартилями (здесь = 10, = 18), разбивают данные на 4 части.

4. Определяют изменение между квартилями = 18 — 10 = 8

5. Отметим на числовой оси наименьшее и наибольшее значения, квартили и медиану — 5 важных точек. Нарисуем прямоугольник, длина которого равна разности изменению между квартилями. Этот прямоугольник делится медианой на две части. Теперь нарисуем «усы», соединив наибольшее и наименьшее значения с соответствующими квартилями.

Мы построили диаграмму «ящик с усами» в соответствии с представленными данными. Теперь, по диаграмме, представим данные. Из диаграммы видно, что приблизительно половина, 50 % , из 15 человек набрали от 10 до 18 баллов, 25% — меньше 10 баллов и 25% — больше 10 баллов.

Разница длин левого и правого «уса» зависит от разницы значений данных в соответствующих частях.

Для построении диаграммы «ящик с усами» из заданной совокупности выделяют 5 значений:

Медиану , квартиль , значение которого меньше медианы и является медианой нижней половины, квартиль , значение которого больше медианы и является медианой верхней половины множества данных, наибольшее и наименьшее значения.

Шаги построения диаграммы «ящик с усами»

1. Проводится горизонтальная прямая.

2. В зависимости от диапазона изменения данных проводится деление.

3. На прямой отмечают 5 значений — , , , наименьшее значение, наибольшее значение.

4. От до рисуется ящик.

5. Рисуем «усы» от : до минимального значения и от до максимального значения.

Задача пример №155

Ниже представлены данные возраста участниц женской паралимпийской команды по волейболу

24, 30, 30, 22, 25, 22, 18, 25, 28, 30, 25, 27. Представьте данные в виде диаграммы «ящик с усами».

Решение:

1. Расположим данные и найдем медиану и квартили.

2. Изобразим числовую ось и отметим эти следующие данные.

3. При помощи разности квартилей = 29 -23 = 6 нарисуем ящик и разделим его на две части (при помощи медианы). Соединим ящик с наибольшим и наименьшим значением.

4. Представление диаграммы. Возраст 50% баскетболисток между 23-29 годами, 25% меньше 23 лет, 25% — больше 29 лет. Длинными или короткими являются «усы» ящика показывает, близко ли или далеко расположены друг от друга данные внутри 25% — го интервала. Например, левый «ус» длиннее, правый — короче. Так как в 25%-интервале значения изменяются между 18-23, а в левом «усе» мы встречаем только два значения 29-30.

Данные, которые сильно отличаются от основных данных совокупности, называются выбросами. Выбросы можно определить относительно верхнего и нижнего квартиля. В этом случае выбросом считается, значение в 1,5 раза больше или меньше разности . Например, в рассмотренном нами примере нижний квартиль 23, верхний квартиль 29, разность квартилей 6. Тогда значения 23 — 1,5 • 6 = 14 и 29 + 1,5 • 6 = 38 считаются граничными значениями. Все значения, которые больше 38 и меньше 14, называются выбросами.

Читайте также:  Формы причесок для прямоугольного лица

Эта лекция взята из раздела решения задач по математике, там вы найдёте другие лекци по всем темам математики:

Математика: полный курс решений задач в виде лекций

Другие темы которые вам помогут понять математику:

Присылайте задания в любое время дня и ночи в whatsapp.

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназачен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Источник статьи: http://natalibrilenova.ru/diagramma-yaschik-s-usami-v-statistike/

Ящик с усами

Ящик с усами (англ. box-and-whiskers diagram or plot, box plot ) — график, использующийся в описательной статистике, компактно изображающий одномерное распределение вероятностей.

Такой вид диаграммы в удобной форме показывает медиану, нижний и верхний квартили, минимальное и максимальное значение выборки и выбросы. Несколько таких ящиков можно нарисовать бок о бок, чтобы визуально сравнивать одно распределение с другим, их можно рисовать горизонтально, либо вертикально. Расстояния между различными частями ящика позволяют определить степень распространения (дисперсии) и асимметрии в данных, и выявить выбросы.

Содержание

Компактность представления информации

График ящик с усами или ящичковая диаграмма был разработан Джоном Тьюки в 1970-х годах. По сути, ящик с усами — это быстрый способ изучения одного или нескольких наборов данных в графическом виде. Этот график может показаться более примитивным, чем, например, оценка гистограммы, но он имеет некоторые преимущества. Он занимает меньше места, и поэтому особенно полезен для сравнения распределений между несколькими группами или наборами данных. Кроме того, ящик с усами в своей первоначальной форме прост для построения.

Если на третьем графике, где показаны плотности распределения, нельзя толком ничего рассмотреть и сравнить, то на четвертом графике, отображающем ящики с усами, легко можно оценить медианы, квартили, степень распространения (дисперсии) и асимметрии в данных, и выявить выбросы. Асимметрию данных можно увидеть не только по медиане, смещенной к какому-либо концу ящика, но и по разной длине усов, выходящих из ящика.

График ящик с усами очень прост для понимания и именно поэтому часто используется в различных публикациях для отображения данных.

Построение

В диаграмме ящик с усами сам «ящик» все время строится с использованием одних и тех же показателей: границами ящика служат первый и третий квартили (25 и 75 процентили соответственно), линия в середине ящика — медиана (50 процентиль). Но концы усов (статистически значимые наблюдения по выборке) могут определяться несколькими способами. Среди наиболее распространенных следует выделить следующие:

  • Минимальное и максимальное наблюдаемое значения данных по выборке (в этом случае выбросы отсутствуют);
  • Разность первого квартиля и 1,5 * интерквартильный размах; Сумма третьего квартиля и 1,5 * интерквартильный размах. В общем виде эта формула имеет вид
Читайте также:  Стрижки для полных женщин с двойным подбородком после 50 короткие

где X1 — нижняя граница уса, X2 — верхняя граница уса, Q1 — первый квартиль ,Q3 — третий квартиль , k — коэффициент, наиболее часто употребляемое значение которого = 1,5

  • Среднее арифметическое по выборке ± одно стандартное отклонение
  • 9 и 91 процентили
  • 2 и 98 процентили

Все данные,выходящие за границы усов являются выбросами и отображаются на графике в виде точек, маленьких кружков или звездочек. Иногда на графике также отмечают среднее арифметическое.

В связи с тем, что не существует единого общего согласия относительно того, что считать основным графиком ящика с усами, при виде такого графика необходимо искать информацию в сопроводительном тексте относительно того, по каким параметрам ящик с усами строился.

Модификации ящика с усами

Первоначальная форма ящика с усами хотя и отличается своей простотой и удобством, однако обладает и некоторыми недостатками. Один из таких существенных недостатков — отсутствие информации на графике о количестве наблюдений по выборке. Действительно ящик с усами позволяет сравнить медианы, квартили, минимумы и максимумы по различным выборкам, но если мы захотим сделать вывод о средней медиане в целом по всей совокупности выборок, то мы не сможем этого сделать не прибегая к данным. В 1978 году первоначальная форма ящика с усами была модифицирована МакГиллом, Ларсеном и Тьюки. Они предложили учитывать размер выборочной совокупности, рисуя ящики разного размера, а также изобразили на графике доверительный интервал для медиан в виде расходящихся клиньев. Чем больше ящик по размерам, тем больше количество наблюдений в выборке, по которой строился этот ящик. что касается доверительного интервала, то он представляет собой выемки на каждом из ящиков, в случае, если получившиеся выемки разных ящиков не пересекаются, их медианы статистически значимо различаются. Модифицированные ящики с усами изображены на Графике 5

Следующая модификация получила название Histplot (График 6)

Теперь на графике отображаются плотности распределения по 3 точкам: медиане, первому и третьему квартилю. Соответственно вместо прямоугольника «ящик» теперь представляет собой 2 равнобедренные трапеции, имеющие смежное основание.

Дальнейшее изменение получило название Vaseplot от сравнения ящика с вазой (График 7)

На данном графике происходит отображение всех плотностей вероятностей от первого до третьего квартиля. Серые области представляют собой доверительный интервал медианы.

Ссылки

  • (1989) «Some Implementations of the Boxplot». The American Statistician43 (1): 50–54. DOI:10.2307/2685173.
  • (1988) «Opening the Box of a Boxplot». The American Statistician42 (4): 257–262. DOI:10.2307/2685133.
  • Поп-математика для взрослых детей
  • При чем тут усы и ящики?
Статистические показатели
Описательная
статистика
Непрерывные
данные
Коэффициент сдвига Среднее (Арифметическое, Геометрическое, Гармоническое) · Медиана · Мода · Размах
Вариация Ранг · Среднеквадратическое отклонение · Коэффициент вариации · Квантиль (Дециль, Процентиль/Перцентиль/Центиль)
Моменты Математическое ожидание · Дисперсия · Асимметрия · Эксцесс
Дискретные
данные
Частота · Таблица контингентности
Статистический
вывод и
проверка
гипотез
Статистический
вывод
Доверительный интервал (Частотная вероятность) · Достоверный интервал (Байесовский вывод) · Статистическая значимость · Мета-анализ
Планирование
эксперимента
Генеральная совокупность · Планирование выборки · Районированная выборка · Репликация · Группировка · Чувствительность и специфичность
Объём выборки Статистическая мощность · Мера эффекта · Стандартная ошибка
Общая оценка Байесовская оценка решения · Метод максимального правдоподобия · Метод моментов нахождения оценок · Оценка минимального расстояния · Оценка максимального интервала
Статистические
критерии
Z-тест · t-критерий Стьюдента · Критерий Фишера · Критерий Пирсона (Хи-квадрат) · Критерий согласия Колмогорова · Тест Вальда · U-критерий Манна — Уитни · Критерий Уилкоксона · Критерий Краскела — Уоллиса · Критерий Кохрена · Критерий Лиллиефорса
Анализ выживания Функция выживания · Оценка Каплана — Мейера · Логранк-тест · Интенсивность отказов · Пропорциональная модель опасностей
Корреляция Коэффициент корреляции Пирсона · Ранг корреляций (Коэффициент Спирмана для ранга корреляций, Коэффициент тау Кендалла для ранга корреляций) · Переменная смешивания
Линейные модели Основная линейная модель · Обобщённая линейная модель · Анализ вариаций · Ковариационный анализ
Регрессия Линейная · Нелинейная · Непараметрическая регрессия · Полупараметрическая регрессия · Логистическая регрессия
Столбчатая диаграмма · Совмещённая диаграмма · Диаграмма управления · Лесная диаграмма · Гистограмма · Q-Q диаграмма · Диаграмма выполнения · Диаграмма разброса · Стебель-листья · Ящик с усами

Wikimedia Foundation . 2010 .

Смотреть что такое «Ящик с усами» в других словарях:

ящик-с-усами — Способ визуализации множества данных, измеренных в интервальной шкале. Часто применяется в разведочном анализе данных. Выглядит как прямоугольник, на котором представлены максимальное и минимальное значения выборки, ее нижний и верхний квартили,… … Словарь социологической статистики

Статистика — Гистограмма (метод графических изображений) У этого термина существуют и другие значения, с … Википедия

Среднее значение — Среднее значение числовая характеристика множества чисел или функций; некоторое число, заключённое между наименьшим и наибольшим из их значений. Содержание 1 Основные сведения 2 Иерархи … Википедия

Среднее степенное — У этого термина существуют и другие значения, см. среднее значение. Среднее степени d (или просто среднее степенное) набора положительных вещественных чисел определяется как При этом по непрерывности доопределяются следующие величины … Википедия

Среднее геометрическое — Средним геометрическим нескольких положительных вещественных чисел называется такое число, которым можно заменить каждое из этих чисел так, чтобы их произведение не изменилось. Более формально: Среднее геометрическое двух чисел также называется… … Википедия

Мода (статистика) — У этого термина существуют и другие значения, см. Мода (значения). Мода значение во множестве наблюдений, которое встречается наиболее часто. Случайная величина может не иметь моды. Иногда в совокупности встречается более чем одна мода (например … Википедия

Медиана (статистика) — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

Моменты случайной величины — Момент случайной величины числовая характеристика распределения данной случайной величины. Содержание 1 Определения 2 Замечания … Википедия

Генеральная совокупность — Генеральная совокупность, генеральная выборка (от лат. generis общий, родовой)(в англ. терминологии population) совокупность всех объектов (единиц), относительно которых учёный намерен делать выводы при изучении конкретной проблемы.… … Википедия

Коэффициент асимметрии — в теории вероятностей величина, характеризующая асимметрию распределения данной случайной величины. Определение Пусть задана случайная величина , такая что . Пусть обозначает третий центральный момент: , а … Википедия

Источник статьи: http://dic.academic.ru/dic.nsf/ruwiki/1348420

Adblock
detector