- Диаграмма «ящик с усами» в статистике
- Диаграмма «ящик с усами»
- Построение диаграммы «Ящик с усами» рассмотрим на следующем примере
- Шаги построения диаграммы «ящик с усами»
- Ящик с усами
- Содержание
- Компактность представления информации
- Построение
- Модификации ящика с усами
- Ссылки
- Смотреть что такое «Ящик с усами» в других словарях:
Диаграмма «ящик с усами» в статистике
Содержание:
Диаграмма «ящик с усами»
Построение диаграммы «Ящик с усами» рассмотрим на следующем примере
Задача пример №154
15 работников фирмы при сдаче экзамена по технике безопасности, получили следующие баллы:
13 9 18 15 14 21 7 10 11 20 5 18 37 16 17.
Представьте данную информацию в виде диаграммы «ящик с усами».
Решение:
1. Расположите данные в порядке возрастания, определите медиану и отметьте ее через .
2. Данные слева от медианы расположены в первой нижней половине, справа от медианы — в верхней половине. Т.е. медиана делит данные на две половинки.
3. Медианы половинок, называемые квартилями (здесь = 10, = 18), разбивают данные на 4 части.
4. Определяют изменение между квартилями — = 18 — 10 = 8
5. Отметим на числовой оси наименьшее и наибольшее значения, квартили и медиану — 5 важных точек. Нарисуем прямоугольник, длина которого равна разности изменению между квартилями. Этот прямоугольник делится медианой на две части. Теперь нарисуем «усы», соединив наибольшее и наименьшее значения с соответствующими квартилями.
Мы построили диаграмму «ящик с усами» в соответствии с представленными данными. Теперь, по диаграмме, представим данные. Из диаграммы видно, что приблизительно половина, 50 % , из 15 человек набрали от 10 до 18 баллов, 25% — меньше 10 баллов и 25% — больше 10 баллов.
Разница длин левого и правого «уса» зависит от разницы значений данных в соответствующих частях.
Для построении диаграммы «ящик с усами» из заданной совокупности выделяют 5 значений:
Медиану , квартиль , значение которого меньше медианы и является медианой нижней половины, квартиль , значение которого больше медианы и является медианой верхней половины множества данных, наибольшее и наименьшее значения.
Шаги построения диаграммы «ящик с усами»
1. Проводится горизонтальная прямая.
2. В зависимости от диапазона изменения данных проводится деление.
3. На прямой отмечают 5 значений — , , , наименьшее значение, наибольшее значение.
4. От до рисуется ящик.
5. Рисуем «усы» от : до минимального значения и от до максимального значения.
Задача пример №155
Ниже представлены данные возраста участниц женской паралимпийской команды по волейболу
24, 30, 30, 22, 25, 22, 18, 25, 28, 30, 25, 27. Представьте данные в виде диаграммы «ящик с усами».
Решение:
1. Расположим данные и найдем медиану и квартили.
2. Изобразим числовую ось и отметим эти следующие данные.
3. При помощи разности квартилей — = 29 -23 = 6 нарисуем ящик и разделим его на две части (при помощи медианы). Соединим ящик с наибольшим и наименьшим значением.
4. Представление диаграммы. Возраст 50% баскетболисток между 23-29 годами, 25% меньше 23 лет, 25% — больше 29 лет. Длинными или короткими являются «усы» ящика показывает, близко ли или далеко расположены друг от друга данные внутри 25% — го интервала. Например, левый «ус» длиннее, правый — короче. Так как в 25%-интервале значения изменяются между 18-23, а в левом «усе» мы встречаем только два значения 29-30.
Данные, которые сильно отличаются от основных данных совокупности, называются выбросами. Выбросы можно определить относительно верхнего и нижнего квартиля. В этом случае выбросом считается, значение в 1,5 раза больше или меньше разности — . Например, в рассмотренном нами примере нижний квартиль 23, верхний квартиль 29, разность квартилей 6. Тогда значения 23 — 1,5 • 6 = 14 и 29 + 1,5 • 6 = 38 считаются граничными значениями. Все значения, которые больше 38 и меньше 14, называются выбросами.
Эта лекция взята из раздела решения задач по математике, там вы найдёте другие лекци по всем темам математики:
Математика: полный курс решений задач в виде лекций |
Другие темы которые вам помогут понять математику:
Присылайте задания в любое время дня и ночи в whatsapp.
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназачен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Источник статьи: http://natalibrilenova.ru/diagramma-yaschik-s-usami-v-statistike/
Ящик с усами
Ящик с усами (англ. box-and-whiskers diagram or plot, box plot ) — график, использующийся в описательной статистике, компактно изображающий одномерное распределение вероятностей.
Такой вид диаграммы в удобной форме показывает медиану, нижний и верхний квартили, минимальное и максимальное значение выборки и выбросы. Несколько таких ящиков можно нарисовать бок о бок, чтобы визуально сравнивать одно распределение с другим, их можно рисовать горизонтально, либо вертикально. Расстояния между различными частями ящика позволяют определить степень распространения (дисперсии) и асимметрии в данных, и выявить выбросы.
Содержание
Компактность представления информации
График ящик с усами или ящичковая диаграмма был разработан Джоном Тьюки в 1970-х годах. По сути, ящик с усами — это быстрый способ изучения одного или нескольких наборов данных в графическом виде. Этот график может показаться более примитивным, чем, например, оценка гистограммы, но он имеет некоторые преимущества. Он занимает меньше места, и поэтому особенно полезен для сравнения распределений между несколькими группами или наборами данных. Кроме того, ящик с усами в своей первоначальной форме прост для построения.
Если на третьем графике, где показаны плотности распределения, нельзя толком ничего рассмотреть и сравнить, то на четвертом графике, отображающем ящики с усами, легко можно оценить медианы, квартили, степень распространения (дисперсии) и асимметрии в данных, и выявить выбросы. Асимметрию данных можно увидеть не только по медиане, смещенной к какому-либо концу ящика, но и по разной длине усов, выходящих из ящика.
График ящик с усами очень прост для понимания и именно поэтому часто используется в различных публикациях для отображения данных.
Построение
В диаграмме ящик с усами сам «ящик» все время строится с использованием одних и тех же показателей: границами ящика служат первый и третий квартили (25 и 75 процентили соответственно), линия в середине ящика — медиана (50 процентиль). Но концы усов (статистически значимые наблюдения по выборке) могут определяться несколькими способами. Среди наиболее распространенных следует выделить следующие:
- Минимальное и максимальное наблюдаемое значения данных по выборке (в этом случае выбросы отсутствуют);
- Разность первого квартиля и 1,5 * интерквартильный размах; Сумма третьего квартиля и 1,5 * интерквартильный размах. В общем виде эта формула имеет вид
где X1 — нижняя граница уса, X2 — верхняя граница уса, Q1 — первый квартиль ,Q3 — третий квартиль , k — коэффициент, наиболее часто употребляемое значение которого = 1,5
- Среднее арифметическое по выборке ± одно стандартное отклонение
- 9 и 91 процентили
- 2 и 98 процентили
Все данные,выходящие за границы усов являются выбросами и отображаются на графике в виде точек, маленьких кружков или звездочек. Иногда на графике также отмечают среднее арифметическое.
В связи с тем, что не существует единого общего согласия относительно того, что считать основным графиком ящика с усами, при виде такого графика необходимо искать информацию в сопроводительном тексте относительно того, по каким параметрам ящик с усами строился.
Модификации ящика с усами
Первоначальная форма ящика с усами хотя и отличается своей простотой и удобством, однако обладает и некоторыми недостатками. Один из таких существенных недостатков — отсутствие информации на графике о количестве наблюдений по выборке. Действительно ящик с усами позволяет сравнить медианы, квартили, минимумы и максимумы по различным выборкам, но если мы захотим сделать вывод о средней медиане в целом по всей совокупности выборок, то мы не сможем этого сделать не прибегая к данным. В 1978 году первоначальная форма ящика с усами была модифицирована МакГиллом, Ларсеном и Тьюки. Они предложили учитывать размер выборочной совокупности, рисуя ящики разного размера, а также изобразили на графике доверительный интервал для медиан в виде расходящихся клиньев. Чем больше ящик по размерам, тем больше количество наблюдений в выборке, по которой строился этот ящик. что касается доверительного интервала, то он представляет собой выемки на каждом из ящиков, в случае, если получившиеся выемки разных ящиков не пересекаются, их медианы статистически значимо различаются. Модифицированные ящики с усами изображены на Графике 5
Следующая модификация получила название Histplot (График 6)
Теперь на графике отображаются плотности распределения по 3 точкам: медиане, первому и третьему квартилю. Соответственно вместо прямоугольника «ящик» теперь представляет собой 2 равнобедренные трапеции, имеющие смежное основание.
Дальнейшее изменение получило название Vaseplot от сравнения ящика с вазой (График 7)
На данном графике происходит отображение всех плотностей вероятностей от первого до третьего квартиля. Серые области представляют собой доверительный интервал медианы.
Ссылки
- (1989) «Some Implementations of the Boxplot». The American Statistician43 (1): 50–54. DOI:10.2307/2685173.
- (1988) «Opening the Box of a Boxplot». The American Statistician42 (4): 257–262. DOI:10.2307/2685133.
- Поп-математика для взрослых детей
- При чем тут усы и ящики?
Статистические показатели | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Описательная статистика |
| ||||||||||||
Статистический вывод и проверка гипотез |
| ||||||||||||
Корреляция | Коэффициент корреляции Пирсона · Ранг корреляций (Коэффициент Спирмана для ранга корреляций, Коэффициент тау Кендалла для ранга корреляций) · Переменная смешивания | ||||||||||||
Линейные модели | Основная линейная модель · Обобщённая линейная модель · Анализ вариаций · Ковариационный анализ | ||||||||||||
Регрессия | Линейная · Нелинейная · Непараметрическая регрессия · Полупараметрическая регрессия · Логистическая регрессия |
Wikimedia Foundation . 2010 .
Смотреть что такое «Ящик с усами» в других словарях:
ящик-с-усами — Способ визуализации множества данных, измеренных в интервальной шкале. Часто применяется в разведочном анализе данных. Выглядит как прямоугольник, на котором представлены максимальное и минимальное значения выборки, ее нижний и верхний квартили,… … Словарь социологической статистики
Статистика — Гистограмма (метод графических изображений) У этого термина существуют и другие значения, с … Википедия
Среднее значение — Среднее значение числовая характеристика множества чисел или функций; некоторое число, заключённое между наименьшим и наибольшим из их значений. Содержание 1 Основные сведения 2 Иерархи … Википедия
Среднее степенное — У этого термина существуют и другие значения, см. среднее значение. Среднее степени d (или просто среднее степенное) набора положительных вещественных чисел определяется как При этом по непрерывности доопределяются следующие величины … Википедия
Среднее геометрическое — Средним геометрическим нескольких положительных вещественных чисел называется такое число, которым можно заменить каждое из этих чисел так, чтобы их произведение не изменилось. Более формально: Среднее геометрическое двух чисел также называется… … Википедия
Мода (статистика) — У этого термина существуют и другие значения, см. Мода (значения). Мода значение во множестве наблюдений, которое встречается наиболее часто. Случайная величина может не иметь моды. Иногда в совокупности встречается более чем одна мода (например … Википедия
Медиана (статистика) — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия
Моменты случайной величины — Момент случайной величины числовая характеристика распределения данной случайной величины. Содержание 1 Определения 2 Замечания … Википедия
Генеральная совокупность — Генеральная совокупность, генеральная выборка (от лат. generis общий, родовой)(в англ. терминологии population) совокупность всех объектов (единиц), относительно которых учёный намерен делать выводы при изучении конкретной проблемы.… … Википедия
Коэффициент асимметрии — в теории вероятностей величина, характеризующая асимметрию распределения данной случайной величины. Определение Пусть задана случайная величина , такая что . Пусть обозначает третий центральный момент: , а … Википедия
Источник статьи: http://dic.academic.ru/dic.nsf/ruwiki/1348420